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The optical potential for an electron interacting with a semiinfinite dielectric is evaluated.
The potential includes both bulk- and surface-plasmon contributions. It is found that the
potential makes a substantial contribution to the reflectivity of the surface.

INTRODUCTION

Experimental studies of the interaction of elec-
tron beams with solids could provide valuable in-
formation about the nature of the surface of the sol-
id, This is particularly true at low energies, where
the penetration of the electron beam does not ex-
tend beyond the first few atomic layers. This pen-
etration is inhibited by two effects: the so-called
primary extinction of the incident beam and the in-
elastic excitation processes. In the former case,
unitarity of the scattering matrix demands that as
electrons are Bragg scattered out of the incident
wave its amplitude must decrease. Since electrons
are strongly deflected at low energies, this is an
effective damping mechanism, The inelastic pro-
cesses also severely limit the penetration as the
electrons tend to excite bulk plasmons, surface
plasmons, and phonons.

In a previous paper! (hereafter referred to as I)
a formalism was introduced which enabled the
treatment of inelastic processes in low-energy
electron-loss spectroscopy by Feynman-diagram
techniques. In particular, it was found that there
exists an optical potential which is describable in
terms of the dielectric properties of the solid. The
concept of optical potentials in low-energy electron-
diffraction (LEED) problems has been employed
before.? In previous computations, however, only
a bulk optical potential was utilized.? As demon-
strated in I, the optical potential for a semiinfinite
dielectric assumes a somewhat different form from
that for a homogeneous dielectric. We therefore
thought it worthwhile to present the computation
for the optical potential for a bounded dielectric,
This could then be used as an input to more sophis-
ticated LEED or inelastic-loss-spectroscopy cal-
culations.*

In Quinn’s derivation of the optical potential,® a
fully quantum-mechanical approach was employed.
The self-energy of an electron moving in a dielec-
tric medium was evaluated and an appropriate op-
tical potential was extracted. In I, we have shown
how this optical potential could be obtained directly
from Maxwell’s equations if semiclassical argu-
ments are employed.® The optical potentials for
the infinite dielectric agreed exactly. For the
semiinfinite dielectric, we found a somewhat dif-
ferent expression which could be interpreted as
the bulk potential plus a surface optical potential,
The surface optical potential was taken to be local-
ized at the surface. Physically we expect the lat-
ter potential to be confined to within a few atomic
spacings of the surface.® As the dielectric function
has no real meaning for distances smaller than
this, we simply treated it as a § function at the
surface,

The evaluation of the potential in this paper
closely parallels the calculation of the bulk optical
potential made by Quinn.® The dielectric properties
of the solid are taken to be those of a “Jellium”
model with the same Fermi energy. Thus, it is
the Lindhard dielectric constant which enters our
formulas. All anisotropic effects are neglected
except for the presence of a boundary. While other
dielectric functions may be employed, they would
undoubtedly entail additional computational effort.
Therefore, as a first attempt at a crude understand-
ing of the solid, we try this simplest case.

THEORY

Imagine the crystal to be oriented so that the out-
ward normal is directed along the Z axis. The ex-
pression derived in I for the optical potential of a
semiinfinite dielectric is
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Uopt =a(E)U(Z)+B(E,¢)5(Z), (1)
where
a(E)=(e?/21%) [dw [d%q (1/4%
X 8(w=-§.9)(1/e-1), (2)

B(E,Y)=(e?/21?) [dw [d°q(q,/q*)

X0(w-q.V)[4/(L+e)-1-1/€]. (3)

U(Z) is a function which assumes the value unity
within the solid and vanishes outside the solid. Both
o and B depend on the incident particle’s energy.
Furthermore, B depends on the angle which the in-
cident particle makes with the surface., In the above
equations, € is the (complex) Lindhard dielectric
function, g, is the component of § along the solid’s
surface, and 7 is the velocity of the electron.

We shall be primarily interested in the imaginary
part of the optical potential since it represents the
effect of inelastic processes (plasmon production
and electron-hole excitation). The real part of the
potential is a somewhat more difficult quantity to
get a handle on because it invariably involves the
work function and the detailed description of the
structure of the surface. In fact, if one formally
tried to evaluate Rea and ReB one would run into
difficulty, While Reqa yields a finite result, Ref
diverges logarithmically. This would seem to im-
ply the need for a low-momentum cutoff - perhaps
near the shielding radius. The imaginary parts of
o and B, on the other hand, are well-defined. This
is reminiscent of the calculation of the level shift
(Lamb shift) and width (lifetime) of atomic energy
levels. For methods used in the literature to de-
scribe the real potential we refer to Ref, 4,

It is convenient to work in units where 7=1,e%=2,
and 2m =1, Then energy is measured in Rydberg
units and distances in Bohr radii.

The surface optical potential 8 may be regarded
as being composed of contributions from elementary
processes in which an electron of momentum P en-
ters, transfers momentum § to the solid, and prop-
agates with momentum p’= P~qd. The 6 function
in Eq. (3) then informs us that energy is conserved,
provided we interpret the velocity as

p=(1/2m) B +') =D +P". 4)

Indeed this result would also be obtained if we
treated ¥ as the conventional current operator act-
ing between plane-wave states. Thus we obtain

B=(1/7% [dw [do [d6 sin6 [dq q,/q?
x6(w-2p-q+42)[4/Q+e)-1-1/e].  (5)

The geometry of the problem is illustrated in Fig.
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1. Note that
.= (g%- ¢3)"?, (62)

qz=q(sind siny cos ¢ +cos § cos P). (6b)

For convenience of notation, the azimuthal integral
is denoted by

16,9)= [ (a/a)d
=f0”[1 - (sin@siny cos ¢
+cos fcosy)?] V2 do. (7)

For normal incidence, ¥ =0, and we have simply
I=27sing. In other cases, I can be expressed in
terms of elliptic functions. We also have the sym-
metry property (6, ) =I(6, 7= ). This tells us
that the optical potential is time-reversal invariant.
Upon performing the frequency integration, we ob-
tain

() [ f20 100 m (122,
(8)

where x =cosf and the integrand is to be evaluated
at

w=2pqx - q%+ 6. (9)

The imaginary infinitesimal part tacked onto w pro-
vides us with a prescription for going around the

poles. ®
It is convenient to introduce the substitutions
Z=4q/2qq, (10a)
W=p/4qo, (10b)
U=Wx - Z, (10¢)

where ¢, is the Fermi momentum, the correspond-
ing Fermi energy being g% We must now specify
the domain of integration of the variables x and Z.

)

c———————— A

FIG. 1. Geometry for problem.
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Clearly the energy loss w must be bracketed be-
tween zero and the height of the initial energy above
the Fermi sea, E ~ E,. This prevents the electron
from collapsing into the Fermi sea and consequent-
ly violating the Pauli exclusion principle, Thus,

in terms of the reduced variables, we have
Z/W=x=2Z/W+(W?-1)/4ZW. (11a)

In addition, the bounds on the cosine function re-

quire
]xl =<1, (11b)

The domain of integration is sketched in Fig. 2.
The roots Z, and Z, defined there are given by

(w-1), (12a)
(w+1). (12b)

lI

1
2
_1
-2
The Lindhard dielectric function is given by

€ =€, + i€y, (13)
where

€, =1+(8mg,Z%) {4z +[1 - (Z - U)?]
X In|(U-Z-1)/(U~Z+1)|

+[1-(Z+vAm|(U+2+1)/(U+Z-1)]},
(14a)
0 if U>Z+1
—(Z-U2 i _
€,=(82% )" x 1-(z-U) if |Z 1|<U<Z+1
0 if U<Z-1and Z>1
4ZU if U<l1-Zand0<Z<1,
(14b)

In Fig. 2 we have denoted by a dashed line the equa-
tion U=Z +1, Above this line the imaginary part
of the dielectric constant vanishes. In this region
there may exist lines on which €, or €, +1 vanish,
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FIG. 2. Domain of integration.

These correspond to the bulk and surface plasmons,
respectively. As seen from Eq. (8) these result
in poles in the integrand. One only obtains contri-
butions from these poles above the plasmon thresh-
olds.

We first consider the contribution to the surface
optical potential stemming from surface plasmons,
Let Z=B(x) be the solution to the equation

e(B,x)+1=0. (15)

In the neighborhood of Z=B(x), we can expand the
dielectric function

0(Z-B)%.

(16)
The sign of the imaginary term 76 is chosen so that
the potential will be absorptive. Thus the surface-
plasmon contribution is

4! 8¢
Imﬁl=—;]x dx I1(6,)/B(x) —~

€(Z,x)+1=[Z-Bx)+ io]%

Z=B

Y am

xp is that point where the surface-plasmon line
intersects the dashed line of Fig. 2. Thus x5 is
the simultaneous root of Eq. (15 and

Wx =2B +1. (18)

From Eq. (14a) we can extract an analytic expres-
sion for the denominator of the integrand of Eq.
(17). Thus, we have

bey 3(e - 1)+ (8mgo22)™

8Z
X [8 +4(U-2Z) 1n<g—:—§—+111~>] . (19)

Similarly we may compute the contribution stem-
ming from the bulk plasmon. Letting Z=A(x) be
the solution to

€ld,x)=0 (20)

and proceeding as before, we obtain
1 9¢
Im B, =—f dx I(6, z/))/A(z 1 - (21)
TJx , z=4

Physically, this represents a correction to the bulk
optical potential due to the presence of a surface,
The quantity x , is the simultaneous solution of
Egs. (18) and (20).

Our final contribution to the optical potential
arises from electron-hole—pair excitations. To
find this component a double integration must be
performed:

Im B3=~- —gf[dxdz

The domain of integration is given by

[ 4e, €,
(1+e,)%+¢€2 e2rel |’
1 2 1+€3

(22)
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2Z-1 Z . zZ wi-1
max[ 7 :W]_xsmm[l,w+z-z———], (23)
0=2Z L(w+1). (24)

Equations (17), (21), and (22) are combined to give
the total surface optical potential.

The threshold condition corresponds to the case
where x4, or xp rises to unity. Thus the threshold
momentum Wis the root of the equation

1gs(1+c)=(W=1)23{-2+(W+1) In[(W+1)/(W-1)]}

(25)

where C=1 for surface plasmons, and C =0 for bulk
plasmons,

The thresholds are plotted as a function of the
Fermi energy in Fig, 3. A typical pair of plas-
mon dispersion curves is illustrated in Fig. 4. As
mentioned earlier, the plasmon exists in the region
where the dielectric constant is real. Although, as
shown in Fig. 2, there are two domains where the
imaginary part vanishes, one of these domains has
no zeros for the dielectric function. The plasmon
dispersion curves end abruptly at the dashed line
in Fig. 4, which represents the boundary of the
electron-hole—excitation region. Undoubtedly, in
a more sophisticated treatment of the solid surface,
the bulk and plasmon curves could look somewhat
different, However, our goal here is to explore

9
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FIG. 3. Plasmon thresholds.
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FIG. 4. Plasmon dispersion curves: ¢;=0.96, W=2,50.

the simplest model with the intention of seeing how
far one can carry it and just where it falters.

RESULTS AND DISCUSSION

In the previous section the explicit expressions
for the optical potential of Eqs. (1)-(3) were recast
into a form in which it is convenient to perform
calculations, The actual computations were made
on a digital computer and the results are presented
in Figs. 5-7. In Fig, 5 the surface optical poten-
tial is displayed for a Fermi energy of 1Ry and for
the case where the electron impinges on the solid
at normal incidence, Following Quinn,® we show
the plasmon-pole contribution and the electron-hole
contribution separately, as well as their sum. Note
that there are two thresholds for plasmon produc-
tion, one corresponding to the bulk plasmons, at
approximately W=1.72, and the other correspond-
ing to surface plasmons, at approximately W=1.56.
These thresholds do not occur at exactly the plasmon
frequencies because conservation of momentum in-
troduces a laboratory frame to center-of-mass
frame conversion, The electron-hole contribution
is seen to peak at roughly 1.8 a. u. and then slowly
decay at higher energies. On the other hand, the
plasmon contribution seems to be monotonically
increasing, at least for moderately low energies.
Thus, at high energies it is the plasmon which
dominates the surface optical potential.

In Fig. 6 we have plotted, for comparison, the
bulk optical potential. Of course this is indepen-
dent of the angle of incidence. While the curves
appear quite similar, the bulk optical potential has
a peak at roughly 2.5 a.u. and then decays slowly
at higher energies. It should also be pointed out
that the units of the two curves are different, so a
rigorous comparison should not be attempted.

Finally, Fig. 7 displays the dependence of the
surface optical potential on the angle of incidence.
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FIG. 5. Surface optical potential: go=1, ¥=0,

We note that there is as much as a 20% variation in
the potential as ¥ ranges between 0 and 37rad. As
the angle of incidence made with the normal is in-
creased, the potential also increases. This effect
may be qualitatively understood by realizing that
the electron spends more time in the vicinity of the
surface in such a case. Thus it has more opportu-
nity to excite surface plasmons., Indeed the largest
variation appears for those energies above thresh-
old, whereas below threshold the potentials are
practically identical.

To obtain some feeling for the importance of the
surface optical potential, we consider an idealized
model. Consider a semiinfinite dielectric block
upon which electrons impinge. All real potentials
in the block will be neglected and it will be assumed
to be endowed only with a bulk and surface (imagi-
nary) optical potential. The reflection coefficient
will be calculated for two cases: one with both the
surface and bulk potentials present and one with
only the bulk potential present, For simplicity we
will only do this for normal incidence, although

TOTAL POTENTIAL

A ELECTRON-HOLE
CONTRIBUTION

PLASMON
CONTRIBUTION |
20 3.0 40
w

FIG. 6. Bulk optical potential: go=1.
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FIG. 7. Surface optical potential for several ¥ values.

the model can be generalized quite readily.
The Schrédinger equation for the problem is

[-ad?¥/dz%-ia(E)U(Z)-iB(E,p)6(Z)-E]v(Z)=0,
(26)

where we have let @ =—i@ and B=-iB. The quan-
tities & and B are, therefore, positive numbers.
The solution to this one-dimensional problem is
simply
Ae’ z Z<0

(2Z)=

=% L Re'Z 7> 0, (27)
where the solid is taken to fill the half-space Z <0.
Continuity of the wave function at the boundary im-
plies

A=1+R, (28)
while the discontinuity in the slope requires that
Aly-if)=ip(R-1). (29)

Inserting Eq. (27) into (26) gives us an explicit ex-
pression for y:

y=—i(p%+iq)’?, (30)

The negative root is taken because this gives no re-
flection when the potentials vanish. Thus the re-
flection amplitude is

R=[p—-(p?+i@)"*~B]/[p+p*+id@) "2+ f].  (31)

The physically measurable reflection coefficient is
given by the absolute square of the amplitude

r=|R|% (32)

The results are plotted in Fig, 8 for two cases.
In one case both & and 8 are nonvanishing, where-
as in the other case E is set equal to zero. The G
and f functions are plotted in Figs. 5 and 6 and
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FIG. 8. Reflection coefficient for two cases.

correspond to a Fermi momentum of gy=1. This
would be roughly appropriate for a metal like alu-
minum. We do not expect a very sensitive depen-
dence of our results on the Fermi momentum, For
this reason we believe that the conclusions reached
in this paper should be applicable to a broad class
of metals. We notice a rather startling alteration
of the reflection coefficient due to the presence of
the surface. The reflectance is increased by more
than an order of magnitude when the absorptive
surface potential is included. That this is plausible
might be seen as follows, Consider the reflection
amplitude of Eq. (31) in the case where g =0. Then,
since @ <p?, we have

R=[p - @%+i@)V?)/[p +(p?+i&@)"?] = - id/4p>
(33)
One might think of the inclusion of a surface as
equivalent, in some sense, to increasing the ab-
sorptivity of the medium. From Eq. (33) we see

that as a is increased, so is R. Furthermore,
since the surface potential is localized at the sur-
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face, it interacts with the full incident wave and so
exerts a large influence on it. Thus it is reason-
able that when B is included R should increase con-
siderably. One might also draw an analogy between
reflection from an absorptive surface and scatter-
ing from an absorptive sphere.” In the case of the
sphere it is known that a black sphere presents an
equal cross section for absorption and elastic scat-
tering, whereas a gray sphere has diminished
elastic scattering. The analog of elastic scattering
for our problem is reflectance, Thus the results
are consistent,

We notice that an appreciable reflectance on the
order of 0.7% occurs when the effect of surface
plasmons is included. Of course, before one can
obtain a theory to compare with experiment, the
all-important Bragg scattering effects must be in-
cluded. 1t is interesting, however, to compare
the “bare” reflectance of our dielectric block with
the reflectance of a typical metal. Khan, Hobson,
and Armstrong® have measured the reflectance of
various tungsten faces as a function of electron
energies. For the 100 face it is found that the re-
flectance drops from around 10% at 20 V to 2% at
40V. Thus at higher energies the effects of sur-
face-plasmon stimulation become increasingly
important and must be included in realistic calcu-
lations. In addition we expect the optical potential
to have a large effect on the width of LEED diffrac-
tion peaks, Thus we conclude that the reflectances
in solids depend rather strongly on the surface op-
tical potential.

We hope, in the near future, to perform a LEED
calculation with Bragg scattering and the full opti-
cal potential included. This could then be con-
fronted against existing experiments.
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